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Abstract. Longitudinal morphometry studies are used to identify sta-
tistical group differences of anatomical changes during follow-up. The
anatomical changes are often characterized by a mapping obtained by
intra-subject non-rigid registration. For subsequent analysis, all these
mappings must be represented in a common coordinate system. In this
work, two different approaches for changing the coordinate system are
compared on synthethic examples as well as on MRI brain images from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data in the con-
text of a longitudinal tensor-based morphometry study between convert-
ers and non-converters mild cognitive impairment (MCI) patients.

1 Introduction

Neurodegenerative diseases are characterized by gradual progression of neu-
ropathology. Accordingly, there is a strong interest in the assessment of the
time evolution of the brain anatomy because it may be used for monitoring dis-
ease progression and for illustrating the drug effects in clinical trials oriented to
preventing or slowing neurodegeneration.

Serial MRI scans at different time points are used for this purpose. In longitu-
dinal tensor-based morphometry (TBM) studies the within-subject anatomical
change is characterized by means of the spatial transformation that maps the
baseline image to the follow-up image(s). All these mappings are defined at the
coordinate system of the baseline image of each subject [1, 2]. For statistical
analysis purposes, the features that characterize the anatomical changes must
be transported to a template coordinate system. Rao et al. proposed to use the
conjugation from group theory to transport the deformation field from the sub-
ject to the template coordinate system [3]. This transport is closely related to
the adjoint action of the Lie group. Later, the parallel transport concept known
in Riemannian geometry was applied to the group of diffeomorphisms in the
context of medical images [4]. Parallel transport of a vector consists in ’translat-
ing’ along a geodesic assuring that the norm and angles are preserved. Parallel
transport requires computation of geodesic paths connecting images, and the
specification of a certain metric on the group of diffeomorphisms. On the other
hand, the adjoint is a purely geometric concept that relies on the group structure
of the diffeomorphisms.

The aim of this work is to revisit the problem of how to transport anatomical
features from the coordinate system of each subject to a given template in the



context of longitudinal TBM studies. Two different approaches are considered
based on either the transport of the anatomical feature, e.g. Jacobian determi-
nant, to the template coordinate system or the transport of the mapping itself.
Two examples are given to illustrate the differences between both approaches:
a simulated example with ground-truth deformation and a longitudinal TBM
study on mild cognitive impairment (MCI) patients from Alzheimer’s Disease
Neuroimaging Initiative (ADNI).

2 Methods

In tensor-based morphometry studies the anatomical information is encoded in
the spatial transformation or mapping between a template image A and each
subject k image Ik. Therefore, accurate non-rigid registration methods are an
essential prerequisite. The mapping is obtained, for example, by minimizing a
functional energy:

E(φk) = R(φk) +M(A, Ik ◦ φk), (1)

being R and M regularization and matching terms respectively. Subsequent sta-
tistical analysis is performed on some features extracted from the set of map-
pings.

For the case of longitudinal studies there are two mappings for each subject
k: the intra-subject mapping between the baseline image I1

k and the follow-up
image I2

k , denoted as ψ1→2
k , and the cross-sectional mapping between the atlas A

and the baseline image, denoted as φk (see Fig. 1). The information of anatomical
changes is characterized by the mapping ψ1→2

k , defined in the coordinate system
of the baseline image I1

k .
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Fig. 1. Transversal and longitudinal mappings.

Two different approaches can be used for translating the anatomical change
from baseline to the atlas coordinate system: either transport the scalar/multivariate
feature extracted from the mapping ψ1→2

k , or transport the mapping ψ1→2
k and

later extract the anatomical feature in the atlas coordinate system.



A very common feature of the mapping that reflects the local volume change
is the Jacobian determinant J1→2

k = det Dψ1→2
k which is a scalar value. In this

case the first approach reduces to J1→2
k (φk(x)) which is the interpolation of the

Jacobian field.
In the second approach, the transport of the mapping ψ1→2

k can be performed
using the conjugation action defined as Adφ

−1

k

ψ1→2
k = φ−1

k ◦ ψ1→2
k ◦ φk. When

the information to be transported is coded by a vector field, the corresponding
linear operator is given by adφ−1v(x) = (Dφ−1 v) ◦ φ(x). This transport can
be interpreted as the longitudinal deformation observed in the atlas coordinate
system. The transported Jacobian determinant at location x in atlas coordinates

can be straightforwardly computed [3] and is given by J1→2
k (φk(x)) det Dφk(x)

det Dφk(x′) ,

being x′ = φ−1
k (ψ1→2

k (φk(x)). Both approaches coincide at a given location x

if either the longitudinal mapping does not produce a displacement, i.e. x is
a fixed point of ψ1→2

k , or the Jacobian determinant of φk is constant in the
neighborhood of x, i.e. φk is locally affine arround x.

3 Examples

3.1 Synthetic data

In order to show a more clear difference of using different transport approaches,
a controlled experiment with ground truth deformation was designed where two
objects are used as a basic model of two neighbor brain structures. Typically,
the anatomical variability among brains from different subjects is much larger
than intra-subject anatomical changes. Accordingly, the mappings from the atlas
to each baseline image contain large deformations, as illustrated in Fig. 2, that
represents two neighbor regions with a different behavior in terms of atrophy
or expansion. For example, in a brain morphometry study, the black object
could represent the temporal horn of lateral ventricles, and the white object the
hippocampus.

Atlas Baseline subject

Fig. 2. Simulated images.



Two longitudinal deformations were simulated in order to compare the result
of both techniques for changing the coordinate system under different situations.
In the first example, the follow-up image was generated by means of a left dis-
placement of the baseline image without distorting the objects’ shape. Black
(white) contours illustrate the new position of the objects after follow-up. In the
left-top panel the contours are in atlas coordinates, while in the right-top panel
are in subject baseline coordinates.

Grids in top row of Fig 3 show the baseline subject coordinates. Note that
the grid in the left-top panel is deformed in order to achieve matching between
the baseline image and the atlas, i.e. grid points represent corresponding points
between the atlas and the subject at baseline.

Atlas coordinates Baseline subject coordinates

Jac. of transported def. Interpolation of Jacobian

Fig. 3. Example 1. Left-displacement of the follow-up image. The outlines in the top
row represent the objects after follow-up represented in atlas (left) and baseline (right)
coordinate system. Bottom: spatial distribution in atlas coordinates of log Jacobian of
transported deformation (left) and interpolation of the Jacobian field (right).

The effect of the adjoint transport on a vector field (red arrows) is also
illustrated: a vector field in baseline subject coordinates is shown in the right-
top panel, and after transportation to atlas coordinates in the left-top panel.



The vector field shown in Fig. 3 corresponds to a stationary velocity field whose
time-integral defined the longitudinal spatial deformation.

The bottom panels show the spatial distribution of the longitudinal deforma-
tion in atlas coordinates, quantified as −log of the Jacobian determinant, with
both transport approaches: adjoint approach (left) and interpolation (right). Ac-
cording to the adjoint approach a relevant atrophy (red color) would be found
in the inner part of black object as well as relevant expansion (blue color)
within the white object. However, the longitudinal deformation in subject co-
ordinates did not include volume changes within the objects. In contrast, the
atrophy/expansion factor in the map obtained with the interpolated approach
is closer to the longitudinal deformation because the values of the Jacobian de-
terminants are much smaller in amplitude.

In the second experiment, the follow-up image was generated by expanding
the black object (see right-bottom panel in Fig. 4 for the longitudinal deforma-
tion in subject coordinates). Grids and contours have the same meaning as in
the previous example. In this case an important artificial atrophy (red color)
was obtained in atlas coordinates when using the approach of transporting the
mapping (left-bottom panel in Fig. 4). Again, the interpolation of the Jacobian
determinant (middle-bottom panel) provided a result which seems to be closer
to the longitudinal deformation Jacobian map.

Atlas coordinates Subject coordinates

Jac. of transported def. Interpolation of Jacobians Jacobian in subject coordinates

Fig. 4. Example with expansion in the follow-up.



3.2 Real data from ADNI study

A subset of 250 MCI patients was selected from the baseline and 12-month
follow-up images of the ADNI study [5], where 114 progressed to Alzheimer’s
disease (AD) during the period of 24-months after baseline and the remaining 136
subjects remained stable. The goal was to assess the statistical group differences
of the brain atrophy rates between converters and non-converters MCI patients.
Both approaches for transporting the atrophy-rate to atlas coordinates were
used.

Both intra- and inter-subject non-rigid registrations were performed with
a stationary velocity field (SVF) diffeomorphic registration method [6, 7]. The
voxel-wise brain atrophy rate was characterized by the Jacobian determinant of
the mapping between baseline and follow-up corresponding images. Analysis of
covariance (ANCOVA) was performed on the log of the Jacobian determinant
using as covariate age, sex and handness.

Fig. 5. Saggital, coronal and axial slices of t-test map between converter and non-
converter MCI groups. Top: Jacobian of transported deformations. Bottom: interpola-
tion of Jacobian field. Red (blue) color denotes atrophy (expansion).

T-test maps are shown in Fig. 5 for both transporting approaches. The
anatomical regions with the largest value of t-statistic are mainly found at hip-
pocampi tail, amygdalae and temporal horn of the lateral ventricles. The values
of the t-statistic in the map obtained by interpolation of the Jacobian field (bot-
tom panel) were slightly larger than for the map with transported deformations.



4 Discussion

Conjugation action on the group of diffeomorphisms was proposed in [3] as a way
to transport motion and deformation. There, the authors argued that interpola-
tion is appropriate for diffusion tensor images, because the diffusion tensor can
be considered as a microscopic property that should not be affected by the spa-
tial normalization. On the other hand, ”the transformation of the deformation
field are implicitly macroscopic properties, since they describe external, observ-
able anatomical changes rather than internal, hidden microscopic phenomena”.
In our opinion brain atrophy (probably due to cell death) rate should be con-
sidered as a microscopic phenomena which should be preserved by the spatial
transformation.

In addition, the synthetic examples presented in this work showed that inter-
polation of the Jacobian preserves the local atrophy/expansion features observed
in the subject coordintes, while the adjoint transport induces Jacobian variations
that are not present in the subject coordinates and depend on the atlas image.

When considering vector fields the adjoint transport preserves the geometric
relations between image an vectors, and could be useful for shape analysis. How-
ever, if a Riemannian metric on the diffeomorphisms group is defined parallel
transport is better suited [4].

Regarding to the statistical maps on clinical data, expansion of the temporal
horns of the lateral ventricles was the most evident finding, in agreement with [8].
Both transporting approaches found this finding. However, interpolation of the
Jacobian determinant obtained larger values in the t-map.
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